
International Journal of Art & Humanity Science (IJAHS) 
www.ijahs.com Volume 3 Issue 5, (Sept-Oct 2016), PP.30-40 

31 | P a g e  
 

Software Defect Prediction Using Data Mining Classification Approach 

Vinay kumar Dwivedi   vinaydwived@gmail.com                                               

Mahesh Kumar Singh  Assistant Professor Bansal Institute of Engineering & Technology, 

Lucknow mks.cse07@gmail.com 

Abstract 

Defect in software systems continue to be a major problem. High quality of software is 

ensured by Software reliability and Software quality assurance. A software defect causes 

software failure in an executable product.  A variety of software fault predictions techniques 

have been proposed, but none has proven to be consistently accurate. The objective in the 

construction of models of software error prediction is to use measures that may be obtained 

relatively early in the software development life cycle to provide reasonable initial estimates 

of quality of an evolving software system. Here various data mining classification and 

prediction techniques viz. Neural Network (NN), Naïve Bayes, k-Nearest Neighbour (kNN)  

have been analysed and compared for software defect prediction model development. For this 

DATATRIEVETM project carried out at Digital Engineering, Italy has been used to validate 

the algorithm. The results showed that model using NN classification technique was a better 

prediction model. 

Keywords: Software Defect, NN, kNN, Naive Bayes, Classification techniques, Data Mining  

Introduction 

Faults in software systems continue to be a major problem [1]. They are present in a 

computer program as errors, flaws, defects, failures, or faults. This hinders the software from 

working in the desired manner. (e.g., a faulty result being produced) [2]. A software fault is a 

defect that causes software failure in an executable product. Number of defects in a module 

of a software can be effectively identified using   Software metrics-based quality prediction 

models as a tool. The use of such models before every planned release of the product, or 

deployment of that may considerably improve system quality [3]. A defective prediction 

model is identified using metrics from an earlier deployment or identical projects, and is then 

implementd in modules presently under development. Afterwards, a timely prediction of that 

modules needs lots of effort to get rid of the defects and then it can be secured. Over the past 

decades years, several empirical studies have been carried out to predict the fault proneness 

models. Software fault prediction study can be grouped as statistical and machine learning 

(ML) technique, of which the machine learning technique is the most popular [4]. Unluckily, 

the seriousness of software fault prediction have not resolved methodically. And none of the 

techniques have achieved widespread applicability in the software industry due to several 

reasons, including the limitation of testing resource, absence of software tools to mechanize 



International Journal of Art & Humanity Science (IJAHS) 
www.ijahs.com Volume 3 Issue 5, (Sept-Oct 2016), PP.30-40 

32 | P a g e  
 

this software fault prediction, the unwillingness to collect the software defect data, lots of 

method based on the private software data, and the other practical problems.  

Machine learning classification algorithm is an accepted technique for software fault 

prediction [6]. Classification forecasting has two levels: classifier construction and the usage 

of the classifier constructed. The former is concerned with the building of a classification 

model. Here it deals with  a set of preset classes using training dataset. Here in the training 

data, all the samples are thought of as belonging to a preset class. This is determined by the 

class attribute label. The model so developed is designated as a classification rules, decision 

tree or mathematical formula.  

In the current work, a relative analysis of a variety of classification techniques has been 

proposed for getting better performance of software defect prediction. It is seen that particle 

swarm optimization is useful for feature selection, and bagging one for class imbalance 

problem. Bagging technique is useful in managing class imbalance. The current work is 

carried out using public datasets from DATATRIEVETM project carried out at Digital 

Engineering, Italy. 

Literature Review 

Various techniques, such as linear regression, discriminate analysis, decision trees, neural 

networks etc. have been developed and applied to predict defects in software. Ahmet Okutan, 

et.al.(2012), proposed a novel method using Bayesian networks to explore the relationships 

among software metrics and defect proneness. Mrinal Singh Rawat et. al.(2012), identified 

causative factors which in turn suggest the remedies to improve software quality and 

productivity. Yajnaseni Dash, Sanjay Kumar Dubey, (2012) aimed to survey various research 

methodologies proposed to predict quality of OO metrics by using neural network approach. 

Ms. Puneet Jai Kaur, Ms. Pallavi, (2013) discussed data mining techniques that are 

association mining, classification and clustering for software defect prediction. Sonali 

Agarwal and Divya Tomar, (2014), proposed a feature selection based Linear Twin Support 

Vector Machine (LSTSVM) model to predict defect prone software modules. Mrs.Agasta 

Adline, Ramachandran. M(2014) Predicting the fault-proneness of program modules when 

the fault labels for modules are unavailable is a challenging task frequently raised in the 

software industry. Pooja Paramshetti , D. A. Phalk, (2015), applied association rule discovery 

for detecting software entities that are likely to be defective in software systems. H. S. 



International Journal of Art & Humanity Science (IJAHS) 
www.ijahs.com Volume 3 Issue 5, (Sept-Oct 2016), PP.30-40 

33 | P a g e  
 

Shukla, Deepak Kumar Verma (2015), analysed various literatures on defect prediction and 

drew various conclusions. 

Data Used 

In the present paper various data mining classification algorithms will be applied for the 

development of an efficient predictive model. For this DATATRIEVETM project carried out 

at Digital Engineering, Italy has been used to validate the algorithm [8]. It has 130 records, 

which includes total nine attributes, of which eight are condition attributes and one is 

decision attribute. They are taken from open source PROMISE Software Engineering 

Repository data set with the intention of making available these datasets for the advancement 

of research in the field of software engineering using different model development 

techniques. This one includes a linguistic attribute (DEFECTS) to indicate defectiveness. It is 

given in 0/1, which indicates no faults / faults found. Hence for the development of the 

classification models these values has been converted into NO/YES as label  attributes. The 

descriptions of the features are taken from 

http://promise.site.uottawa.ca/SERepository/datasets/datatrieve.arff [5]. 

Table 1 Input and Output model parameters used for model development 

 

 

Problem Statement and Proposed Technique 

This section presents the proposed technique to analyze software defect data. The proposed 

approach uses permutation combination of  various classification techniques, viz. Neural 

Input Variable @attribute LOC6_0 numeric 

@attribute LOC6_1 numeric 

@attribute Added_LoC numeric 

@attribute Del_LoC numeric 

@attribute Diff_Block numeric 

@attribute Mod_Rate numeric 

@attribute Mod_Know numeric 

@attribute ReusedLoC numeric 

Output Variable @attribute Faulty6_1 {0, 1} 

 

http://promise.site.uottawa.ca/SERepository/datasets/datatrieve.arff


International Journal of Art & Humanity Science (IJAHS) 
www.ijahs.com Volume 3 Issue 5, (Sept-Oct 2016), PP.30-40 

34 | P a g e  
 

Network (NN), Decision tree (DT), Support Vector Machine (SVM), K-Nearest Neighbour 

(k-NN). Further stacking, a meta modeling techniques in order to enhance the accuracy of the 

classification techniques have also been used in the model. In the first stage a pre-processing 

model is proposed to optimize the dataset. In the second stage experiments are performed 

using the machine learning classification methods to obtain the performance vector for 

various software fault prediction models. The proposed framework is depicted in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Experimental Framework for Data Analysis  

Model Development Stages 

In the present work two software error prediction models have been developed using Rapid 

Miner tool. The details of the two models using different algorithms are tabulated below. 

Table 2: Algorithms used for MODEL-I and MODEL-II 

Mode

l 

Main 

Process 

Basic 

Learner 

Stacking Model 

Learner 

Training 

Algorithm 

Learning 

Process 

I X-Validation *** *** NN *** 

Open Rapid Miner 

Process Datasets  

DaDatDatasetsDoc

umnets 

Load  Datasets 

Cross Validation 

Training                                                           Testing 

 

 

Various Classification 

Approach 

 
Apply 

Model 
Performance 

Evaluation 

Validation 

Store Model 

Results  



International Journal of Art & Humanity Science (IJAHS) 
www.ijahs.com Volume 3 Issue 5, (Sept-Oct 2016), PP.30-40 

35 | P a g e  
 

II X-Validation k-NN, NN Naive Bayes Stacking *** 

k-NN= k Nearest Neighbourhood,  NN=Neural Network,  

The flowchart used in Rapid Miner for carrying out software error prediction model 

development are given in  Figures 2 and 3 below, 

 

Fig 2 : Screen Shot of Main Process of MODEL-I 

 

Fig 3 : Screen Shot of Main Process of MODEL-II 

The various stages include data retrieve, normalization of data, data validation, which 

includes training and testing sub-process. In Model-I training is done using NN classifier, 

where as in Model-II training includes stacking meta-learner. The Stacking operator is a 

nested operator, having two sub-processes, the base learner and the Stacking model learner. 

The base learner uses kNN and NN whereas stacking model learner uses Naive Bayes. Next, 

testing incorporates Apply model and Performance Evaluation. The Apply Model operator 

applies the already learnt (trained) model on an ExampleSet. The Performance operator is 

used for performance evaluation, and delivers a list of performance criteria values. These 

performance criteria are automatically determined in order to fit the learning task type.  

Table 3 : Parameter Used for Model Development 

Sl. No. Operator   Parameter Used Type 

  MODEL - I       

1 Normalize a Min. val. 0 



International Journal of Art & Humanity Science (IJAHS) 
www.ijahs.com Volume 3 Issue 5, (Sept-Oct 2016), PP.30-40 

36 | P a g e  
 

 Using range transformation b Max. Val. 1 

2 Validation a no. of validations 10 

    b sampling type Automatic 

3 Neural Net a criterion Training cycle – 500 

        Learning rate – 0.5 

        Momentum – 0.9 

          

4 Performance a Accuracy   

    b Precision   

    c Recall   

    d RMSE   

    e Absolute error   

          

  MODEL - II       

          

1 Validation a no. of validations 10 

    b sampling type Automatic 

2 k-NN a k 1 

    b Measure Type Mixed Measure using Euclidean distance 

3 Neural Net a criterion Training cycle – 500 

        Learning rate – 0.3 

        Momentum – 0.2 

4 Naïve Bayes a Laplace Correction   

 

Results and Discussions: 

The dataset consists of one includes a linguistic attribute (DEFECTS) to indicate 

defectiveness. It is given in 0/1, which indicates no faults / faults found. Hence for the 

development of the classification models these values has been converted into NO/YES as 

label  attributes.  

If an attribute is labeled as yes and is classified as yes it is counted as true positive else if it is 

classified as no it is counted false negative. Similarly, if a label is labeled no and is classified 

as no it is counted as true no else if it is classified as yes it is counted as false no. Based on 

these outcomes a two by two confusion matrix can be drawn for a given test set. This is 

shown in Figure 4.8 and 4.9  below for both the models I and II.  

The confusion matrix in figure 4 below forms the basis for the calculation of the following 

metrics.  

i. Accuracy = (tp+tn)/ (P+N)  



International Journal of Art & Humanity Science (IJAHS) 
www.ijahs.com Volume 3 Issue 5, (Sept-Oct 2016), PP.30-40 

37 | P a g e  
 

ii. Precision = tp/ (tp+fp)  

iii. Recall/ true positive rate = tp/P  

iv. F-measure =2/ ((1/precision)+(1/recall))  

   

Fig. 4 : Confusion Matrix for MODEL- I &II 

The accuracy of the models I and II are 91.54 and 87.69 and their graphical representation are shown 

in Fig. 5  below. 

 

Fig. 5: Graphical Representation of Model Accuracy 

Further below is given the tabulation of Absolute error, RMSE, Recall, Precision and f-measure of 

both the ModelsI and II.  

Table 4: Error Values of Model – I & II 

Model No. Abs. Error RMSE 

I 0.124 0.276 

II 0.126 0.338 

84

86

88

90

92

I II

%

Model

Accuracy



International Journal of Art & Humanity Science (IJAHS) 
www.ijahs.com Volume 3 Issue 5, (Sept-Oct 2016), PP.30-40 

38 | P a g e  
 

 

Fig. 6 : Comparative Plot of AE and RMSE OF MODEL-I and MODEL-II 

Table – 5 

Model No. Precision Recall f-Measure 

I 50 15 26.67 

II 22.22 15 20 

 

 

Fig. 7 : Comparative Plot of MODEL-I and MODEL-II 

From the above analytical study of Table 4 and 5 and their respective graphs in Fig. 5, 6 and 

7  as regards the performance analysis of both the MODEL –I and MODEL-II, it can be seen 

that MODEL-I has a prediction accuracy of 91.54% a compared to that of MODEL-II with 

87.69% accuracy. The RMSE and AE values are also better for MODEL-I as compared to 

MODEL-II.  Although Recall for both the models are almost same, but Precision and f-

measure for MODEL-I is better than MODEL-II. Thus MODEL-I using Neural Network 

training algorithm has been able to develop a better model as compared to MODEL-II using 

Stacking as training algorithm .  

Conclusion 

Software developers and quality control managers must come out with a variety of 

combinations like persons, tools, development techniques, etc. so as to be able to develop 

quality products and be able to deliver it on time, that too within budgetary cost. Thus in 

0

0.2

0.4

Abs. Error RMSE

0

10

20

30

40

50

Precision Recall f-Measure

%

I



International Journal of Art & Humanity Science (IJAHS) 
www.ijahs.com Volume 3 Issue 5, (Sept-Oct 2016), PP.30-40 

39 | P a g e  
 

order to tackle the above entioned issues. An attempt has been made in the present work for 

software error prediction. Here various data mining classification and prediction techniques 

viz. Neural Network (NN), Naïve Bayes, k-Nearest Neighbour (kNN)  have been analysed 

and compared for software defect prediction model development. For this DATATRIEVETM 

project carried out at Digital Engineering, Italy has been used to validate the algorithm. It has 

130 records, which includes total nine attributes, of which eight are condition attributes and 

one is decision attribute.  

Two model MODEL-I and MODEL-II were developed and compared. MODEL-I was 

developed using NN training algorithm and was found to be a better prediction model as 

compared to MODEL-II which used stacking as training algorithm. MODEL-I had an 

accuracy of 91.54% as compared to MODEL-II with 87.64% accuracy.  Thus it can be 

concluded that Neural Network training algorithm is a better classification tool for the 

development of software prediction model than as compared to stacking model, using Naïve 

Bayes as Stacking model learner and k-NN and Neural Net as Base Learner.   

  

References: 

1. Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K. Bains, Manpreet 

Kaur, Gurvinder Singh, "A Study on Early Prediction of Fault Proneness in Software 

Modules using Genetic Algorithm", World Academy of Science, Engineering and 

Technology, 2010, pp. 648-653.  

2. http://puretest.blogspot.com/2009/11/1.html    

3. Ahmet Okutan, et. al., (2012), “Software defect prediction using Bayesian networks”, 

Empir Software Eng (2014) 19:154–181    

4. Mrinal Singh Rawat, et. al.,(2012), “Software Defect Prediction Models for Quality 

Improvement: A Literature Study”, IJCSI International Journal of Computer Science 

Issues, Vol. 9, Issue 5, No 2,    

5. DATATRIEVETM project DATABAASE, 

http://promise.site.uottawa.ca/SERepository/datasets/datatrieve.arff . 

6. Jang, J-S. R., (1993), “ANFIS-Adaptive-Network Based Fuzzy Inference System”, 

IEEE Transactions on Systems, Man and Cybernatics,  23(3), pp 665-685. 

7. Sonali Agarwal and Divya Tomar, (2014), “ A Feature Selection Based Model for 

Software Defect Prediction”,  International Journal of Advanced Science and 

Technology Vol.65 (2014), pp.39-58. 

8. Romi Satria Wahono and Nanna Suryana (2013), “Combining Particle Swarm 

Optimization based Feature Selection and Bagging Technique for Software Defect 

Prediction”, International Journal of Software Engineering and Its Applications Vol.7, 

No.5 (2013), pp.153-166. 

9. Ahmet Okutan, Olcay Taner Yıldız,(2012) “Software defect prediction using 

Bayesian networks”, Empir Software Eng (2014) 19:154–181 © Springer 

Science+Business Media, LLC. 

http://promise.site.uottawa.ca/SERepository/datasets/datatrieve.arff


International Journal of Art & Humanity Science (IJAHS) 
www.ijahs.com Volume 3 Issue 5, (Sept-Oct 2016), PP.30-40 

40 | P a g e  
 

10. Mrinal Singh Rawat, Sanjay Kumar Dubey,(2012) “Software Defect Prediction 

Models for Quality Improvement: A Literature Study”, IJCSI International Journal of 

Computer Science Issues, Vol. 9, Issue 5, No 2,  pp 288-296. 

11. Yajnaseni Dash, Sanjay Kumar Dubey, (2012), “ Quality Prediction in Object 

Oriented System by Using ANN: A Brief Survey”,  International Journal of Advanced 

Research in Computer Science and Software Engineering,  Volume 2, Issue 2,, pp.1-6. 

12. Ms. Puneet Jai Kaur, Ms. Pallavi, (2013), “ Data Mining Techniques for Software 

Defect Prediction”,  International Journal of Software and Web Sciences (IJSWS),  

International Journal of Software and Web Sciences 3(1), pp. 54-57. 

13. Sonali Agarwal and Divya Tomar, (2014), “ A Feature Selection Based Model for 

Software Defect Prediction”,  International Journal of Advanced Science and 

Technology Vol.65 (2014), pp.39-58. 

14. Mrs.Agasta Adline, Ramachandran. M(2014), “Predicting the Software Fault Using 

the Method of Genetic Algorithm”, International Journal of Advanced Research in 

Electrical, Electronics and Instrumentation Engineering, Vol. 3, Special Issue 2,, pp 

390-398. 

15. Pooja Paramshetti, D. A .Phalk, (2015), “Software Defect Prediction for Quality 

Improvement Using Hybrid Approach”, International Journal of Application or 

Innovation in Engineering & Management (IJAIEM), Volume 4, Issue 6, June 2015, 

pp.99-104. 

16. H. S. Shukla, Deepak Kumar Verma (2015), “A Review on Software Defect 

Prediction”, International Journal of Advanced Research in Computer Engineering & 

Technology (IJARCET) Volume 4 Issue 12, pp. 4387-4394. 
 

 

 

 

 


